
exascaleproject.org

How to Understand and Tune HPC I/O
Performance

ATPESC 2021

Shane Snyder
ssnyder@mcs.anl.gov
Mathematics and Computer Science Division
Argonne National Laboratory

August 6, 2021

 2 ATPESC 2021, August 6

Hands on exercises: https://github.com/radix-io/hands-on

Surveying the HPC I/O landscape

As evidenced by today’s presentations, the
HPC I/O landscape is deep and vast

• High-level data abstractions: HDF5, PnetCDF
• Parallel file systems: Lustre, GPFS
• Storage hardware: HDDs, SSDs, NVM

Application developers tend to prefer high-level
data models for convenience, but these APIs
often obfuscate the behavior of lower level
interfaces that drive I/O performance

Understanding I/O behavior in this environment
is difficult, much less turning observations into
actionable I/O tuning decisions

A complex data management ecosystem

I/O Hardware

Application

Parallel File System

Data Model Support

Transformations

Technologies

S
to

ra
ge

 a
bs

tra
ct

io
ns

https://github.com/radix-io/hands-on

 3 ATPESC 2021, August 6

Hands on exercises: https://github.com/radix-io/hands-on

Characterizing HPC I/O workloads with Darshan

You have already heard
some basics about
Darshan, a powerful tool
for users to better
understand and tune their
I/O workloads

Darshan provides many
helpful stats across
multiple layers of the I/O
stack that are critical to
understanding application
I/O behavior

A look under the hood of an HPC application

I/O Hardware

Application

Parallel File System

Data Model Support

Transformations

*Note: Detailed HDF5 instrumentation can be
optionally enabled only for Darshan versions 3.2.0+

HDF5 file stats*:
● Metadata operation counts

(open, flush)
● MPI-IO usage
● Metadata timing

https://github.com/radix-io/hands-on

 4 ATPESC 2021, August 6

Hands on exercises: https://github.com/radix-io/hands-on

Characterizing HPC I/O workloads with Darshan

You have already heard
some basics about
Darshan, a powerful tool
for users to better
understand and tune their
I/O workloads

Darshan provides many
helpful stats across
multiple layers of the I/O
stack that are critical to
understanding application
I/O behavior

A look under the hood of an HPC application

I/O Hardware

Application

Parallel File System

Data Model Support

Transformations

*Note: Detailed HDF5 instrumentation can be
optionally enabled only for Darshan versions 3.2.0+

HDF5 dataset stats*:
● Data operation counts (read,

write)
● Metadata operation counts

(open, flush)
● Total I/O volumes (read,

write)
● Common access info (size,

hyperslab parameters)
● Chunking parameters
● Dataspace total dimensions,

points
● MPI-IO collective usage
● Data & metadata timing

https://github.com/radix-io/hands-on

 5 ATPESC 2021, August 6

Hands on exercises: https://github.com/radix-io/hands-on

Characterizing HPC I/O workloads with Darshan

You have already heard
some basics about
Darshan, a powerful tool
for users to better
understand and tune their
I/O workloads

Darshan provides many
helpful stats across
multiple layers of the I/O
stack that are critical to
understanding application
I/O behavior

A look under the hood of an HPC application

I/O Hardware

Application

Parallel File System

Data Model Support

Transformations

MPI-IO file stats:
● Data operation counts

(read, write, sync)
● Metadata operation counts

(open)
● Collective and independent
● Total I/O volumes (read,

write)
● Access size info

○ Common values
○ Histograms

● Data & metadata timing

https://github.com/radix-io/hands-on

 6 ATPESC 2021, August 6

Hands on exercises: https://github.com/radix-io/hands-on

Characterizing HPC I/O workloads with Darshan

You have already heard
some basics about
Darshan, a powerful tool
for users to better
understand and tune their
I/O workloads

Darshan provides many
helpful stats across
multiple layers of the I/O
stack that are critical to
understanding application
I/O behavior

A look under the hood of an HPC application

I/O Hardware

Application

Parallel File System

Data Model Support

Transformations

POSIX file stats:
● Data operation counts

(read, write, sync)
● Metadata operation counts

(open, seek, stat)
● Total I/O volumes (read,

write)
● File alignment
● Access size/stride info

○ Common values
○ Histograms

● Data & metadata timing

https://github.com/radix-io/hands-on

 7 ATPESC 2021, August 6

Hands on exercises: https://github.com/radix-io/hands-on

Characterizing HPC I/O workloads with Darshan

You have already heard
some basics about
Darshan, a powerful tool
for users to better
understand and tune their
I/O workloads

Darshan provides many
helpful stats across
multiple layers of the I/O
stack that are critical to
understanding application
I/O behavior

A look under the hood of an HPC application

I/O Hardware

Application

Parallel File System

Data Model Support

Transformations

Lustre file stats:
● Data server (OST) and

metadata server (MDT)
counts

● Stripe size/width
● OST list serving a file

https://github.com/radix-io/hands-on

 8 ATPESC 2021, August 6

Hands on exercises: https://github.com/radix-io/hands-on

Characterizing HPC I/O workloads with Darshan

You have already heard
some basics about
Darshan, a powerful tool
for users to better
understand and tune their
I/O workloads

Darshan provides many
helpful stats across
multiple layers of the I/O
stack that are critical to
understanding application
I/O behavior

A look under the hood of an HPC application

I/O Hardware

Application

Parallel File System

Data Model Support

Transformations

Let’s see how Darshan
can be leveraged in some
practical use cases that

demonstrate some widely
held best practices in

tuning HPC I/O
performance

https://github.com/radix-io/hands-on

 9 ATPESC 2021, August 6

Hands on exercises: https://github.com/radix-io/hands-on

For some parallel file systems like Lustre, users have direct control over file
striping parameters
Bad news: Users may have to have some knowledge of the file system to get good I/O
performance

Good news: Users can often get higher I/O performance than system defaults with thoughtful
tuning -- file systems aren’t perfect for every workload!

Tuning the parallel file system

Ensuring storage resources match application I/O needs

https://github.com/radix-io/hands-on

 10 ATPESC 2021, August 6

Hands on exercises: https://github.com/radix-io/hands-on

For some parallel file systems like Lustre, users have direct control over file
striping parameters
Bad news: Users may have to have some knowledge of the file system to get good I/O
performance

Good news: Users can often get higher I/O performance than system defaults with thoughtful
tuning -- file systems aren’t perfect for every workload!

Tuning the parallel file system

Ensuring storage resources match application I/O needs

Simulation clients write
data to 1 storage server

Simulation
data

https://github.com/radix-io/hands-on

 11 ATPESC 2021, August 6

Hands on exercises: https://github.com/radix-io/hands-on

For some parallel file systems like Lustre, users have direct control over file
striping parameters
Bad news: Users may have to have some knowledge of the file system to get good I/O
performance

Good news: Users can often get higher I/O performance than system defaults with thoughtful
tuning -- file systems aren’t perfect for every workload!

Tuning the parallel file system

Ensuring storage resources match application I/O needs

Simulation
data

Simulation clients load balance
writes across multiple servers

Simulation
data

https://github.com/radix-io/hands-on

 12 ATPESC 2021, August 6

Hands on exercises: https://github.com/radix-io/hands-on

Tuning decisions can and should be made independently for different file types

While large application datasets should ideally be distributed across as many
storage resources as possible, smaller files tend to benefit from being contained
to a single server

Tuning the parallel file system

Ensuring storage resources match application I/O needs

Simulation
config files

Simulation clients read config
data from 1 storage server

https://github.com/radix-io/hands-on

 13 ATPESC 2021, August 6

Hands on exercises: https://github.com/radix-io/hands-on

Tuning decisions can and should be made independently for different file types

While large application datasets should ideally be distributed across as many
storage resources as possible, smaller files tend to benefit from being contained
to a single server

Tuning the parallel file system

Ensuring storage resources match application I/O needs

Simulation
config files

Better yet, limit storage contention by
having 1 client read data and distribute

using communication (e.g., MPI)

Simulation
config files

https://github.com/radix-io/hands-on

 14 ATPESC 2021, August 6

Hands on exercises: https://github.com/radix-io/hands-on

Be aware of what file system settings are available to you and don’t assume
system defaults are always the best… you might be surprised what you find

• ALCF’S Theta and NERSC’s Cori default Lustre stripe width is 1

Darshan output from a simple 10-process (10-node) POSIX I/O workload to
shared file on a Cori’s Lustre scratch volume:

Tuning the parallel file system

Ensuring storage resources match application I/O needs

https://github.com/radix-io/hands-on

 15 ATPESC 2021, August 6

Hands on exercises: https://github.com/radix-io/hands-on

Tuning the parallel file system

Ensuring storage resources match application I/O needs

> lfs setstripe -c 10 testFile # change stripe width to 10

~200%
performance

boost

https://github.com/radix-io/hands-on

 16 ATPESC 2021, August 6

Hands on exercises: https://github.com/radix-io/hands-on

Tuning low-level (POSIX) file I/O

Users may also need to pay close attention to file system alignment when
crafting I/O accesses to a file

• Accesses that cross alignment boundaries likely perform worse than nicely aligned I/O

Making efficient use of a no-frills I/O API

https://github.com/radix-io/hands-on

 17 ATPESC 2021, August 6

Hands on exercises: https://github.com/radix-io/hands-on

Tuning low-level (POSIX) file I/O

Users may also need to pay close attention to file system alignment when
crafting I/O accesses to a file

• Accesses that cross alignment boundaries likely perform worse than nicely aligned I/O

For Lustre, performance can be maximized by aligning I/O to stripe boundaries:

Making efficient use of a no-frills I/O API

Unaligned I/O requests can span
multiple servers and introduce

inefficiencies in storage protocols
File:

https://github.com/radix-io/hands-on

 18 ATPESC 2021, August 6

Hands on exercises: https://github.com/radix-io/hands-on

Tuning low-level (POSIX) file I/O

Users may also need to pay close attention to file system alignment when
crafting I/O accesses to a file

• Accesses that cross alignment boundaries likely perform worse than nicely aligned I/O

For Lustre, performance can be maximized by aligning I/O to stripe boundaries:

Making efficient use of a no-frills I/O API

Instead, ensure client accesses are
well-aligned to avoid Lustre server

contention
File: File:

https://github.com/radix-io/hands-on

 19 ATPESC 2021, August 6

Hands on exercises: https://github.com/radix-io/hands-on

Tuning low-level (POSIX) file I/O

Repeating our simple 10-client example striping a single file across 10 Lustre
OSTs

Unaligned:

Making efficient use of a no-frills I/O API

https://github.com/radix-io/hands-on

 20 ATPESC 2021, August 6

Hands on exercises: https://github.com/radix-io/hands-on

Tuning low-level (POSIX) file I/O

Repeating our simple 10-client example striping a single file across 10 Lustre
OSTs

Unaligned:

Aligned:

Making efficient use of a no-frills I/O API

https://github.com/radix-io/hands-on

 21 ATPESC 2021, August 6

Hands on exercises: https://github.com/radix-io/hands-on

Tuning low-level (POSIX) file I/O

Even in this small workload, we pay a nearly 20% performance penalty when I/O
accesses are not aligned to file stripes (1 MB)

Unaligned:

Aligned:

Making efficient use of a no-frills I/O API

https://github.com/radix-io/hands-on

 22 ATPESC 2021, August 6

Hands on exercises: https://github.com/radix-io/hands-on

Tuning high-level (HDF5) data access

Recall that HDF5 provides a chunking mechanism to partition user datasets into
contiguous chunks in the underlying file

• Users can greatly improve performance of partial dataset I/O operations by choosing
chunking parameters that match expected access patterns

Optimizing application interactions with the I/O stack

https://github.com/radix-io/hands-on

 23 ATPESC 2021, August 6

Hands on exercises: https://github.com/radix-io/hands-on

Tuning high-level (HDF5) data access

Recall that HDF5 provides a chunking mechanism to partition user datasets into
contiguous chunks in the underlying file

• Users can greatly improve performance of partial dataset I/O operations by choosing
chunking parameters that match expected access patterns

Optimizing application interactions with the I/O stack

By default, HDF5 will store the
dataset contiguously row-by-row
(i.e., row-major format) in the file

https://github.com/radix-io/hands-on

 24 ATPESC 2021, August 6

Hands on exercises: https://github.com/radix-io/hands-on

Tuning high-level (HDF5) data access

Recall that HDF5 provides a chunking mechanism to partition user datasets into
contiguous chunks in the underlying file

• Users can greatly improve performance of partial dataset I/O operations by choosing
chunking parameters that match expected access patterns

Optimizing application interactions with the I/O stack

If dataset access patterns do not suit
a simple row-major storage scheme,

chunking can be applied to map
chunks of dataset data to contiguous

regions in the file
column-based block-based

https://github.com/radix-io/hands-on

 25 ATPESC 2021, August 6

Hands on exercises: https://github.com/radix-io/hands-on

Tuning high-level (HDF5) data access

Consider a 256-process (16-node) example where each process exclusively
accesses a block of the dataset

• Each process writes a 2048x2048 block of the dataset (32 MB per-process, 8 GB total)

Optimizing application interactions with the I/O stack

With no chunking, each process issues many
smaller non-contiguous I/O requests to write

their block, yielding low I/O performance

https://github.com/radix-io/hands-on

 26 ATPESC 2021, August 6

Hands on exercises: https://github.com/radix-io/hands-on

Tuning high-level (HDF5) data access

Consider a 256-process (16-node) example where each process exclusively
accesses a block of the dataset

• Each process writes a 2048x2048 block of the dataset (32 MB per-process, 8 GB total)

Optimizing application interactions with the I/O stack

256 individual
HDF5 writes

(1-per-process)
yields 500K+
POSIX writes

https://github.com/radix-io/hands-on

 27 ATPESC 2021, August 6

Hands on exercises: https://github.com/radix-io/hands-on

Tuning high-level (HDF5) data access

Consider a 256-process (16-node) example where each process exclusively
accesses a block of the dataset

• Each process writes a 2048x2048 block of the dataset (32 MB per-process, 8 GB total)

Optimizing application interactions with the I/O stack

With chunking applied, each process can
read their entire data block using one large,

contiguous access in the file

https://github.com/radix-io/hands-on

 28 ATPESC 2021, August 6

Hands on exercises: https://github.com/radix-io/hands-on

Tuning high-level (HDF5) data access

Consider a 256-process (16-node) example where each process exclusively
accesses a block of the dataset

• Each process writes a 2048x2048 block of the dataset (32 MB per-process, 8 GB total)

Optimizing application interactions with the I/O stack

Appropriate
chunking selection

yields 2.8x
performance

increase

https://github.com/radix-io/hands-on

 29 ATPESC 2021, August 6

Hands on exercises: https://github.com/radix-io/hands-on

Tuning high-level (HDF5) data access

Optimizing application interactions with the I/O stack

With collective I/O enabled, designated aggregator
processes perform I/O on behalf of their peers,

and communicate their data using MPI calls

An alternative optimization relies on collective I/O to improve the efficiency of this
block-style data access

• Rely on MPI-IO layer collective buffering algorithm to generate contiguous storage accesses
and to limit number of clients interacting with storage system

https://github.com/radix-io/hands-on

 30 ATPESC 2021, August 6

Hands on exercises: https://github.com/radix-io/hands-on

Tuning high-level (HDF5) data access

Optimizing application interactions with the I/O stack
Consider a 256-process (16-node) example where each process exclusively
accesses a block of the dataset

• Each process writes a 2048x2048 block of the dataset (32 MB per-process, 8 GB total)

Collective I/O
yields 4.6x

improvement over
no chunking, and
1.6x improvement

over chunking

https://github.com/radix-io/hands-on

 31 ATPESC 2021, August 6

Hands on exercises: https://github.com/radix-io/hands-on

Using Darshan to analyze HDF5 apps

Using the MACSio¹ HDF5 benchmark, run a couple of simple examples
demonstrating the types of insights HDF5 I/O instrumentation can enable

• 60-process (5-node) single shared file, 3d mesh, write roughly 1 GiB of cumulative H5D data
• Compare performance of collective and independent I/O configurations

Collective vs independent I/O behavior

1. https://github.com/LLNL/MACSio

b/w: ~30 MB/sec

POSIX I/O dominates, H5
incurs non-negligible
overhead forming this

workload

Negligible time spent in
MPI-IO

b/w: ~290 MB/sec

H5 and POSIX incur
minimal overhead for this

workload

MPI-IO collective I/O
algorithm dominates

https://github.com/radix-io/hands-on

 32 ATPESC 2021, August 6

Hands on exercises: https://github.com/radix-io/hands-on

Using Darshan to analyze HDF5 apps

Dataset access patterns

Radar plots, or other methods, can be
used to help visualize characteristics

of HDF5 dataset accesses

Dataset access patterns could be
used to help set/optimize chunking
parameters to limit accesses to as

few chunks as possible
Number of elements accessed in each dataset dimension

for the most common access for each MACSio configuration
1. https://github.com/LLNL/MACSio

Using the MACSio¹ HDF5 benchmark, run a couple of simple examples
demonstrating the types of insights HDF5 I/O instrumentation can enable

• 60-process (5-node) single shared file, 3d mesh, write roughly 1 GiB of cumulative H5D data
• Compare dataset access patterns across different configurations

https://github.com/radix-io/hands-on

 33 ATPESC 2021, August 6

Hands on exercises: https://github.com/radix-io/hands-on

Summarizing I/O tuning options

As a user of I/O interface X, what tuning vectors do I have?

I/O Interface Striping Alignment Collective I/O Chunking

HDF5 ✓ ✓ ✓ ✓

PnetCDF ✓ ✓ ✓ 𝘟

MPI-IO ✓ ✓ ✓ 𝘟

POSIX ✓ ✓- 𝘟 𝘟

https://github.com/radix-io/hands-on

 34 ATPESC 2021, August 6

Hands on exercises: https://github.com/radix-io/hands-on

I/O Interface Striping Alignment Collective I/O Chunking

HDF5 ✓ ✓ ✓ ✓

PnetCDF ✓ ✓ ✓ 𝘟

MPI-IO ✓ ✓ ✓ 𝘟

POSIX ✓ ✓- 𝘟 𝘟

Summarizing I/O tuning options

Automatically align application
data and library metadata, if user

requests so

As a user of I/O interface X, what tuning vectors do I have?

Collective I/O can
be automatically

aligned

POSIX I/O requires
manually aligning

every access

https://github.com/radix-io/hands-on

 35 ATPESC 2021, August 6

Hands on exercises: https://github.com/radix-io/hands-on

Summarizing I/O tuning options

As a user of I/O interface X, what tuning vectors do I have?

I/O Interface Striping Alignment Collective I/O Chunking

HDF5 ✓ ✓ ✓ ✓

PnetCDF ✓ ✓ ✓ 𝘟

MPI-IO ✓ ✓ ✓ 𝘟

POSIX ✓ ✓- 𝘟 𝘟

In general, users should try to take advantage of high-level I/O libraries:

● I/O optimization strategies like collective I/O & chunking can net large performance
gains, especially when combined with striping and alignment optimizations

https://github.com/radix-io/hands-on

 36 ATPESC 2021, August 6

Hands on exercises: https://github.com/radix-io/hands-on

Accounting for a changing HPC landscape

The various technologies covered today form much
of the foundation of the traditional HPC data
management stack

• Variations on this stack have been deployed at HPC
facilities and leveraged by users for high-performance
parallel I/O for decades

But, the HPC computing landscape is changing,
even if slowly

Changes driven at both ends of the stack
• Newly embraced compute paradigms
• Emerging storage technologies

Adapting to technological shifts

I/O Hardware

Application

Parallel File System

Data Model Support

Transformations

https://github.com/radix-io/hands-on

 37 ATPESC 2021, August 6

Hands on exercises: https://github.com/radix-io/hands-on

Large-scale MPI applications are still the norm
at most most HPC centers, but other non-MPI
compute frameworks are gaining traction:

● Deep learning (TensorFlow, Keras, PyTorch)
● Data analytics frameworks (Spark, Dask)
● Other non-MPI distributed computing frameworks

(Legion, UPC)

Many of these frameworks define their own
data models and have their own mechanisms
for managing distributed tasks

Accounting for a changing HPC landscape

Adapting to technological shifts

I/O Hardware

Application

Parallel File System

Data Model Support

Transformations

https://github.com/radix-io/hands-on

 38 ATPESC 2021, August 6

Hands on exercises: https://github.com/radix-io/hands-on

Instrumenting non-MPI applications with Darshan

Starting with Darshan version 3.2.0, Darshan supports
instrumentation of non-MPI applications*

• Just set DARSHAN_ENABLE_NONMPI environment variable
before running

Generates unique Darshan log for every process invoked

Extend Darshan instrumentation from traditional MPI
applications to any type of executable

• Python frameworks
• File transfer utilities
• Data service daemons
• Other serial applications

Darshan
instrumentation

*1 caveat: applications must
be dynamically-linked

https://github.com/radix-io/hands-on

 39 ATPESC 2021, August 6

Hands on exercises: https://github.com/radix-io/hands-on

HPC storage technology is changing to meet
needs of diverse application workloads

● Users typically have more options than a
traditional parallel file system over HDDs

Hardware trends enabling low-latency,
high-bandwidth I/O to applications

● Burst buffers, NVM

Novel storage services offer compelling
alternatives to traditional file systems

● Unify, DAOS

Accounting for a changing HPC landscape

Adapting to technological shifts

I/O Hardware

Application

Parallel File System
Storage services

Data Model Support

Transformations

https://github.com/radix-io/hands-on

 40 ATPESC 2021, August 6

Hands on exercises: https://github.com/radix-io/hands-on

PyDarshan: simplifying Darshan log file analysis

Darshan has traditionally offered only the C-based darshan-util library and a handful
of corresponding utilities to users

• Development of custom Darshan analysis utilities is cumbersome, requiring users to either:
– Develop analysis tools in C using the low-level darshan-util library
– Perform an inconvenient conversion from darshan-parser text output

PyDarshan has been developed* to simplify the interfacing of analysis tools with
Darshan log data

• Use Python CFFI module to provide Python bindings to the native darshan-utils C API
• Expose Darshan log data as dictionaries, pandas dataframes, and numpy arrays

We are hopeful PyDarshan will lead to a richer ecosystem for Darshan log analysis
utilities

* Thanks to Jakob Luettgau (DKRZ) for
contributing most of the PyDarshan code,

examples, and documentation

https://github.com/radix-io/hands-on

 41 ATPESC 2021, August 6

Hands on exercises: https://github.com/radix-io/hands-on

PyDarshan: simplifying Darshan log file analysis

We’ve already found Jupyter notebooks to be an effective way of sharing PyDarshan analysis
examples (code, documentation, visualizations) with users, collaborators, etc.

Check the Darshan GitHub repo for PyDarshan examples,
notebooks, etc.

https://github.com/darshan-hpc/darshan

https://github.com/radix-io/hands-on

 42 ATPESC 2021, August 6

Hands on exercises: https://github.com/radix-io/hands-on

PyDarshan: simplifying Darshan log file analysis

PyDarshan is currently available on PyPI and ready for users to analyze Darshan
logs with

• Use ‘pip install darshan’ to
install the PyDarshan module
from PyPI on your system

• Alternatively, PyDarshan can be
installed directly from the
Darshan source, by running
’python3 setup.py install
--user‘ from the
‘darshan-util/pydarshan’
directory

https://github.com/radix-io/hands-on

 43 ATPESC 2021, August 6

Hands on exercises: https://github.com/radix-io/hands-on

Wrapping up

Hopefully this material proves useful in providing a
deeper understanding of the different layers of the HPC
I/O stack covered today, as well as potential tuning
vectors available to you as user
• Optimizing your I/O workload can be challenging, but can

potentially offer large performance gains
• Don’t always count on I/O libraries or file systems to automatically

provide you the best performance out of the box

Darshan is invaluable for providing understanding of
application I/O behavior and informing potential tuning
decisions
• https://github.com/darshan-hpc/darshan

Please reach out with questions, feedback, etc.

I/O Hardware

Application

Parallel File System

Data Model Support

Transformations

https://github.com/radix-io/hands-on
https://github.com/darshan-hpc/darshan

exascaleproject.org

Thank you!

 45 ATPESC 2021, August 6

Hands on exercises: https://github.com/radix-io/hands-on

Bonus

https://github.com/radix-io/hands-on

 46 ATPESC 2021, August 6

Hands on exercises: https://github.com/radix-io/hands-on

Understanding I/O beyond the application

Many storage resources at HPC facilities
are shared between users

• Application-centric analysis can only tell us
so much about HPC I/O behavior --
systems-level perspective is needed for
complete picture

A more complete understanding of
system I/O behavior is critical to
reasoning about I/O performance

• How is my performance compared to others?
• What are the performance bottlenecks?
• How much is my I/O affected by contention?

Into the wild...

Many existing tools can be used to help
compile an accurate system-level view

of I/O

https://github.com/radix-io/hands-on

 47 ATPESC 2021, August 6

Hands on exercises: https://github.com/radix-io/hands-on

Understanding I/O beyond the application

The TOKIO (Total Knowledge of I/O) project aims to provide a framework for
holistic characterization and analysis of HPC I/O workloads:

• Collect, integrate, and analyze disparate I/O data
• Define platform-independent blueprint for deploying and utilizing I/O characterization tools,

data collection/storage services, and analysis methods
• Provide a trove of relevant data characterizing HPC I/O workloads

Stakeholders:
• Application scientists (productivity)
• Facility operators (efficiency)
• Researchers (optimization)

For more info: https://www.anl.gov/mcs/tokio-total-knowledge-of-io

Forming a holistic view

https://github.com/radix-io/hands-on
https://www.anl.gov/mcs/tokio-total-knowledge-of-io

 48 ATPESC 2021, August 6

Hands on exercises: https://github.com/radix-io/hands-on

Understanding I/O beyond the application

TOKIO utility called UMAMI (Unified
metrics and measurements interface)
contextualizes application performance
measurements with other system
measurements

How does my performance compare to
previous runs?

Do any metrics stand out that
positively/negatively impacted my
performance?

A TOKIO example

https://github.com/radix-io/hands-on

 49 ATPESC 2021, August 6

Hands on exercises: https://github.com/radix-io/hands-on

Understanding I/O beyond the application

A TOKIO example Historical
measurements

Box plots to
compare against

historical
measurements

Raw
performance

Coverage
factor

represents
contention

Metadata
loads

https://github.com/radix-io/hands-on

 50 ATPESC 2021, August 6

Hands on exercises: https://github.com/radix-io/hands-on

Understanding I/O beyond the application

A TOKIO example

Low performance
relative to recent runs

Low coverage factor,
meaning other jobs were
performing I/O while we

were

High metadata server
load also likely impacting

performance

https://github.com/radix-io/hands-on

